Cart (Loading....) | Create Account
Close category search window
 

Predictive haptic guidance: intelligent user assistance for the control of dynamic tasks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Forsyth, B.A.C. ; Dept. of Comput. Sci., British Columbia Univ., Vancouver, BC, Canada ; MacLean, K.E.

Intelligent systems are increasingly able to offer real-time information relevant to a user's manual control of an interactive system, such as dynamic system control space constraints for animation control and driving. However, it is difficult to present this information in a usable manner and other approaches which have employed haptic cues for manual control in "slow" systems often lead to instabilities in highly dynamic tasks. We present a predictive haptic guidance method based on a look-ahead algorithm, along with a user evaluation which compares it with other approaches (no guidance and a standard potential-field method) in a 1-DoF steered path-following scenario. Look-ahead guidance outperformed the other methods in both quantitative performance and subjective preference across a range of path complexity and visibility and a force analysis demonstrated that it applied smaller and fewer forces to users. These results (which appear to derive from the predictive guidance's supporting users in taking earlier and more subtle corrective action) suggest the potential of predictive methods in aiding manual control of dynamic interactive tasks where intelligent support is available.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:12 ,  Issue: 1 )

Date of Publication:

Jan.-Feb. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.