By Topic

Thin structure segmentation and visualization in three-dimensional biomedical images: a shape-based approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Huang, A. ; Diagnostic Radiol. Dept., Nat. Inst. of Health, Bethesda, MD, USA ; Nielson, G.M. ; Razdan, A. ; Farin, G.E.
more authors

This paper presents a shape-based approach in extracting thin structures, such as lines and sheets, from three-dimensional (3D) biomedical images. Of particular interest is the capability to recover cellular structures, such as microtubule spindle fibers and plasma membranes, from laser scanning confocal microscopic (LSCM) data. Hessian-based shape methods are reviewed. A synthesized linear structure is used to evaluate the sensitivity of the multiscale filtering approach in extracting closely positioned fibers. We find that the multiscale approach tends to fuse lines together, which makes it unsuitable for visualizing mouse egg spindle fibers. Single-scale Gaussian filters, balanced between sensitivity and noise resistance, are adopted instead. In addition, through an ellipsoidal Gaussian model, the eigenvalues of the Hessian matrix are quantitatively associated with the standard deviations of the Gaussian model. Existing shape filters are simplified and applied to LSCM data. A significant improvement in extracting closely positioned thin lines is demonstrated by the resultant images. Further, the direct association of shape models and eigenvalues makes the processed images more understandable qualitatively and quantitatively.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:12 ,  Issue: 1 )