Cart (Loading....) | Create Account
Close category search window
 

Mesh parameterization by minimizing the synthesized distortion metric with the coefficient-optimizing algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jingqi Yan ; Inst. of Image Process. & Pattern Recognition, Shanghai Jiao Tong Univ., China ; Xin Yang ; Pengfei Shi ; Zhang, D.

The parameterization of a 3D mesh into a planar domain requires a distortion metric and a minimizing process. Most previous work has sought to minimize the average area distortion, the average angle distortion, or a combination of these. Typical distortion metrics can reflect the overall performance of parameterizations but discount high local deformations. This affects the performance of postprocessing operations such as uniform remeshing and texture mapping. This paper introduces a new metric that synthesizes the average distortions and the variances of both the area deformations and the angle deformations over an entire mesh. Experiments show that, when compared with previous work, the use of synthesized distortion metric performs satisfactorily in terms of both the average area deformation and the average angle deformation; furthermore, the area and angle deformations are distributed more uniformly. This paper also develops a new iterative process for minimizing the synthesized distortion, the coefficient-optimizing algorithm. At each iteration, rather than updating the positions immediately after the local optimization, the coefficient-optimizing algorithm first update the coefficients for the linear convex combination and then globally updates the positions by solving the Laplace system. The high performance of the coefficient-optimizing algorithm has been demonstrated in many experiments.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:12 ,  Issue: 1 )

Date of Publication:

Jan.-Feb. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.