By Topic

Visualization task performance with 2D, 3D, and combination displays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tory, M. ; Dept. of Comput. Sci., British Columbia Univ., Vancouver, BC, Canada ; Kirkpatrick, A.E. ; Atkins, M.S. ; Moller, T.

We describe a series of experiments that compare 2D displays, 3D displays, and combined 2D/3D displays (orientation icon, ExoVis, and clip planes) for relative position estimation, orientation, and volume of interest tasks. Our results indicate that 3D displays can be very effective for approximate navigation and relative positioning when appropriate cues, such as shadows, are present. However, 3D displays are not effective for precise navigation and positioning except possibly in specific circumstances, for instance, when good viewing angles or measurement tools are available. For precise tasks in other situations, orientation icon and ExoVis displays were better than strict 2D or 3D displays (displays consisting exclusively of 2D or 3D views). The combined displays had as good or better performance, inspired higher confidence, and allowed natural, integrated navigation. Clip plane displays were not effective for 3D orientation because users could not easily view more than one 2D slice at a time and had to frequently change the visibility of individual slices. Major factors contributing to display preference and usability were task characteristics, orientation cues, occlusion, and spatial proximity of views that were used together.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:12 ,  Issue: 1 )