Cart (Loading....) | Create Account
Close category search window
 

Adaptive learning approach to landmine detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sun, Y. ; Dept. of Electr. & Comput. Eng., Florida Univ., Gainesville, FL, USA ; Jian Li

We consider landmine detection using forward-looking ground penetrating radar (FLGPR). The two main challenging tasks include extracting intricate structures of target signals and adapting a classifier to the surrounding environment through learning. Through the time-frequency (TF) analysis, we find that the most discriminant information is TF localized. This observation motivates us to use the over-complete wavelet packet transform (WPT) to sparsely represent signals with the discriminant information encoded into several bases. Then the sequential floating forward selection method is used to extract these components and thereby a neural network (NNW) classifier is designed. To further improve the classification performance and deal with the problem of detecting mines in an unconstraint environment, the AdaBoost algorithm is used. We integrate the feature selection process into the original AdaBoost algorithm. In each iteration, AdaBoost identifies the hard-to-learn examples and a new set of features which provide the specific discriminant information for these hard samples is extracted adaptively and a new classifier is trained. Experimental results based on measured data are presented, showing that a significant improvement on the classification performance can be achieved.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:41 ,  Issue: 3 )

Date of Publication:

July 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.