By Topic

Image based regression using boosting method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhou, S.K. ; Dept. of Integrated Data Syst., Siemens Corporate Res., Princeton, NJ, USA ; Georgescu, B. ; Xiang Sean Zhou ; Comaniciu, D.

We present a general algorithm of image based regression that is applicable to many vision problems. The proposed regressor that targets a multiple-output setting is learned using boosting method. We formulate a multiple-output regression problem in such a way that overfitting is decreased and an analytic solution is admitted. Because we represent the image via a set of highly redundant Haar-like features that can be evaluated very quickly and select relevant features through boosting to absorb the knowledge of the training data, during testing we require no storage of the training data and evaluate the regression function almost in no time. We also propose an efficient training algorithm that breaks the computational bottleneck in the greedy feature selection process. We validate the efficiency of the proposed regressor using three challenging tasks of age estimation, tumor detection, and endocardial wall localization and achieve the best performance with a dramatic speed, e.g., more than 1000 times faster than conventional data-driven techniques such as support vector regressor in the experiment of endocardial wall localization.

Published in:

Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on  (Volume:1 )

Date of Conference:

17-21 Oct. 2005