Cart (Loading....) | Create Account
Close category search window
 

Discovering objects and their location in images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sivic, J. ; Dept. of Eng. Sci., Oxford Univ., UK ; Russell, B.C. ; Efros, A.A. ; Zisserman, A.
more authors

We seek to discover the object categories depicted in a set of unlabelled images. We achieve this using a model developed in the statistical text literature: probabilistic latent semantic analysis (pLSA). In text analysis, this is used to discover topics in a corpus using the bag-of-words document representation. Here we treat object categories as topics, so that an image containing instances of several categories is modeled as a mixture of topics. The model is applied to images by using a visual analogue of a word, formed by vector quantizing SIFT-like region descriptors. The topic discovery approach successfully translates to the visual domain: for a small set of objects, we show that both the object categories and their approximate spatial layout are found without supervision. Performance of this unsupervised method is compared to the supervised approach of Fergus et al. (2003) on a set of unseen images containing only one object per image. We also extend the bag-of-words vocabulary to include 'doublets' which encode spatially local co-occurring regions. It is demonstrated that this extended vocabulary gives a cleaner image segmentation. Finally, the classification and segmentation methods are applied to a set of images containing multiple objects per image. These results demonstrate that we can successfully build object class models from an unsupervised analysis of images.

Published in:

Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on  (Volume:1 )

Date of Conference:

17-21 Oct. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.