By Topic

Sparse image coding using a 3D non-negative tensor factorization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hazan, T. ; Sch. of Eng. & Comput. Sci., Hebrew Univ., Jerusalem, Israel ; Polak, S. ; Shashua, A.

We introduce an algorithm for a non-negative 3D tensor factorization for the purpose of establishing a local parts feature decomposition from an object class of images. In the past, such a decomposition was obtained using non-negative matrix factorization (NMF) where images were vectorized before being factored by NMF. A tensor factorization (NTF) on the other hand preserves the 2D representations of images and provides a unique factorization (unlike NMF which is not unique). The resulting "factors" from the NTF factorization are both sparse (like with NMF) but also separable allowing efficient convolution with the test image. Results show a superior decomposition to what an NMF can provide on all fronts - degree of sparsity, lack of ghost residue due to invariant parts and efficiency of coding of around an order of magnitude better. Experiments on using the local parts decomposition for face detection using SVM and Adaboost classifiers demonstrate that the recovered features are discriminatory and highly effective for classification.

Published in:

Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on  (Volume:1 )

Date of Conference:

17-21 Oct. 2005