Cart (Loading....) | Create Account
Close category search window
 

Lazy verification in fault-tolerant distributed storage systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
5 Author(s)
Abd-El-Malek, M. ; Carnegie Mellon Univ., Pittsburgh, PA, USA ; Ganger, G.R. ; Goodson, G.R. ; Reiter, M.K.
more authors

Verification of write operations is a crucial component of Byzantine fault-tolerant consistency protocols for storage. Lazy verification shifts this work out of the critical path of client operations. This shift enables the system to amortize verification effort over multiple operations, to perform verification during otherwise idle time, and to have only a subset of storage-nodes perform verification. This paper introduces lazy verification and describes implementation techniques for exploiting its potential. Measurements of lazy verification in a Byzantine fault-tolerant distributed storage system show that the cost of verification can be hidden from both the client read and write operation in workloads with idle periods. Furthermore, in workloads without idle periods, lazy verification amortizes the cost of verification over many versions and so provides a factor of four higher write bandwidth when compared to performing verification during each write operation.

Published in:

Reliable Distributed Systems, 2005. SRDS 2005. 24th IEEE Symposium on

Date of Conference:

26-28 Oct. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.