By Topic

An adaptive multi-objective scheduling selection framework for continuous query processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sutherland, T.M. ; Dept. of Comput. Sci., Worcester Polytech. Inst., MA, USA ; Pielech, B. ; Yali Zhu ; Luping Ding
more authors

Adaptive operator scheduling algorithms for continuous query processing are usually designed to serve a single performance objective, such as minimizing memory usage or maximizing query throughput. We observe that different performance objectives may sometimes conflict with each other. Also due to the dynamic nature of streaming environments, the performance objective may need to change dynamically. Furthermore, the performance specification defined by users may itself be multi-dimensional. Therefore, utilizing a single scheduling algorithm optimized for a single objective is no longer sufficient. In this paper, we propose a novel adaptive scheduling algorithm selection framework named AMoS. It is able to leverage the strengths of existing scheduling algorithms to meet multiple performance objectives. AMoS employs a lightweight learning mechanism to assess the effectiveness of each algorithm. The learned knowledge can be used to select the algorithm that probabilistically has the best chance of improving the performance. In addition, AMoS has the flexibility to add and adapt to new scheduling algorithms, query plans and data sets during execution. Our experimental results show that AMoS significantly outperforms the existing scheduling algorithms with regard to satisfying both uni-objective and multi-objective performance requirements.

Published in:

Database Engineering and Application Symposium, 2005. IDEAS 2005. 9th International

Date of Conference:

25-27 July 2005