By Topic

New methodologies in computational nanoscience facilitated by the GRID computing environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hirata, F. ; Nat. Inst. of Nat. Sci., Inst. for Molecular Sci., Okazaki, Japan

The nanoscience explores the materials which are about 10-9 times smaller in size. It is the quantum mechanics (or mechanics) that governs the NANO world. A material treated in the nanoscience consists of an infinite or homogeneous system and finite or heterogeneous systems: for example, a protein (finite) in water (infinite) and a molecular wire (finite) connected to metal surface (infinite). It will be essential to combine the "heterogeneous" methodologies in number of different ways to create new theories or computational methods to investigate "heterogeneous" materials in the NANO world. We have been developing a new computational environment which is called GRID. A newly developed method or computer program in a particular research node will be integrated into the collaborative research to be shared in "real time" by the group members scattered among the heterogeneous GRID nodes. One of our concerns in the computational nanoscience is self-organization processes in solution such as micelle (or vesicle) formation and protein folding, in which "solvent" plays a crucial role.

Published in:

MEMS, NANO and Smart Systems, 2005. Proceedings. 2005 International Conference on

Date of Conference:

24-27 July 2005