By Topic

Concept-based term weighting for Web information retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zakos, J. ; Sch. of Inf. & Commun. Technol., Griffith Univ., Brisbane, Qld., Australia ; Verma, B.

In this paper we present a novel technique for determining term importance by exploiting concept-based information found in ontologies. Calculating term importance is a significant and fundamental aspect of most information retrieval approaches and it is traditionally determined through inverse document frequency (IDF). We propose concept-based term weighting (CBW), a technique that is fundamentally different to IDF in that it calculates term importance by intuitively interpreting the conceptual information in ontologies. We show that when CBW is used in an approach for Web information retrieval on benchmark data, it performs comparatively to IDF, with only a 3.5% degradation in retrieval accuracy. While this small degradation has been observed the significance of this technique is that 1) unlike IDF, CBW is independent of document collection statistics, 2) it presents a new way of interpreting ontologies for retrieval and 3) it introduces an additional source of term importance information that can be used for term weighting.

Published in:

Computational Intelligence and Multimedia Applications, 2005. Sixth International Conference on

Date of Conference:

16-18 Aug. 2005