Cart (Loading....) | Create Account
Close category search window
 

Vector analysis and control of advanced static VAr compensators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Schauder, C. ; Westinghouse Electr. Corp., Baltimore, MD

The advanced static VAr compensator (ASVC) is based on the principle that a self-commutating static inverter can be connected between three-phase AC power lines and an energy-storage device, such as an inductor or capacitor, and controlled to draw mainly reactive current from the lines. This capability is analogous to that of the rotating synchronous condenser and it can be used in a similar way for the dynamic compensation of power transmission systems, providing voltage support, increased transient stability, and improved damping. The authors present a simplified mathematical model of the ASVC that has made it possible to derive the transfer functions needed for control system synthesis. The resulting control system designs are briefly outlined and further analysis is presented to show the behaviour of the ASVC when the line voltage is unbalanced or distorted. The analysis is based on a vectorial transformation of variables, first described by R.H. Park (1928) for AC machine analysis, and later, using complex numbers, by W.V. Lyon (1954) in the theory of instantaneous symmetrical components

Published in:

AC and DC Power Transmission, 1991., International Conference on

Date of Conference:

17-20 Sep 1991

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.