By Topic

Estimating Target State Distributions In a Distributed Sensor Network Using a Monte-Carlo Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Borkar, M. ; Georgia Inst. of Technol., Atlanta, GA ; Cevher, V. ; McClellan, J.H.

Distributed processing algorithms are attractive alternatives to centralized algorithms for target tracking applications in sensor networks. In this paper, we address the issue of determining a initial probability distribution of multiple target states in a distributed manner to initialize distributed trackers. Our approach is based on Monte-Carlo methods, where the state distributions are represented as a discrete set of weighted particles. The target state vector is the target positions and velocities in the 2D plane. Our approach can determine the state vector distribution even if the individual sensors are not capable of observing it. The only condition is that the network as a whole can observe the state vector. A robust weighting strategy is formulated to account for misdetections and clutter. To demonstrate the effectiveness of the algorithm, we use direction-of-arrival nodes and range-Doppler nodes

Published in:

Machine Learning for Signal Processing, 2005 IEEE Workshop on

Date of Conference:

28-28 Sept. 2005