Cart (Loading....) | Create Account
Close category search window
 

Distributed data management for large volume visualization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gao, J. ; Oak Ridge Nat. Lab., TN, USA ; Huang, J. ; Johnson, C.R. ; Atchley, S.

We propose a distributed data management scheme for large data visualization that emphasizes efficient data sharing and access. To minimize data access time and support users with a variety of local computing capabilities, we introduce an adaptive data selection method based on an "enhanced time-space partitioning" (ETSP) tree that assists with effective visibility culling, as well as multiresolution data selection. By traversing the tree, our data management algorithm can quickly identify the visible regions of data, and, for each region, adaptively choose the lowest resolution satisfying user-specified error tolerances. Only necessary data elements are accessed and sent to the visualization pipeline. To further address the issue of sharing large-scale data among geographically distributed collaborative teams, we have designed an infrastructure for integrating our data management technique with a distributed data storage system provided by logistical networking (LoN). Data sets at different resolutions are generated and uploaded to LoN for wide-area access. We describe a parallel volume rendering system that verifies the effectiveness of our data storage, selection and access scheme.

Published in:

Visualization, 2005. VIS 05. IEEE

Date of Conference:

23-28 Oct. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.