Cart (Loading....) | Create Account
Close category search window
 

Statistical behavior of joint least-square estimation in the phase diversity context

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Idier, J. ; Ecole Centrale de Nantes, France ; Mugnier, L. ; Blanc, A.

The images recorded by optical telescopes are often degraded by aberrations that induce phase variations in the pupil plane. Several wavefront sensing techniques have been proposed to estimate aberrated phases. One of them is phase diversity, for which the joint least-square approach introduced by Gonsalves et al. is a reference method to estimate phase coefficients from the recorded images. In this paper, we rely on the asymptotic theory of Toeplitz matrices to show that Gonsalves' technique provides a consistent phase estimator as the size of the images grows. No comparable result is yielded by the classical joint maximum likelihood interpretation (e.g., as found in the work by Paxman et al.). Finally, our theoretical analysis is illustrated through simulated problems.

Published in:

Image Processing, IEEE Transactions on  (Volume:14 ,  Issue: 12 )

Date of Publication:

Dec. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.