By Topic

A robust structure-adaptive hybrid vector filter for color image restoration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhonghua Ma ; Sch. of Comput. Sci. & Software Eng., Monash Univ., Melbourne, Vic., Australia ; Hong Ren Wu ; Bin Qiu

A robust structure-adaptive hybrid vector filter is proposed for digital color image restoration in this paper. At each pixel location, the image vector (i.e., pixel) is first classified into several different signal activity categories by applying a modified quadtree decomposition to luminance component (image) of the input color image. A weight-adaptive vector filtering operation with an optimal window is then activated to achieve the best tradeoff between noise suppression and detail preservation. Through extensive simulation experiments conducted using a wide range of test color images, the filter has demonstrated superior performance to that of a number of well known benchmark techniques, in terms of both standard objective measurements and perceived image quality, in suppressing several distinct types of noise commonly considered in color image restoration, including Gaussian noise, impulse noise, and mixed noise.

Published in:

Image Processing, IEEE Transactions on  (Volume:14 ,  Issue: 12 )