By Topic

Analysis and optimization of a compliant mechanism-based digital force/weight sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zheyao Wang ; Inst. of Microelectron., Tsinghua Univ., Beijing, China ; Huan Hu

Digital force/weight sensors have some advantages over their analog counterparts. This paper describes the optimization and implementation of a novel digital force/weight sensor that uses a thickness-shear quartz crystal resonator (QCR) and a unique compliant mechanism. The compliant mechanism consists of eight flexure hinges and is used to fix the sensitive QCR and transfer the measured force. Advantages of such a sensor include inherent digital output, high resolution, high reliability, and low cost. Due to the complex structure and the multivariables of the compliant mechanism, conventional trial methods are inefficient in determining the dimensions. To solve this problem, an optimization method has been developed by employing rigid-body model, finite element method, and nonlinear programming techniques. Experimental results show that it is more efficient than trial methods in optimizing complex compliant mechanism-based sensors. This method can be used as a generic method for optimizing force sensors using compliant mechanisms, to obtain the desired specifications.

Published in:

Sensors Journal, IEEE  (Volume:5 ,  Issue: 6 )