By Topic

Pilot-symbol-assisted LDPC coded BICM over correlated Rayleigh fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Huaning Niu ; Dept. of Electr. Eng., Univ. of Washington, Seattle, WA, USA ; Ritcey, J.

Pilot-symbol-assisted low-density parity-check (LDPC)-coded bit-interleaved coded modulation (BICM) is analyzed using the density evolution (DE) and the extrinsic information-transfer (EXIT) chart for correlated Rayleigh fading channels. The key parameter (the power correlation coefficient) is identified, and the threshold degradation is quantified. The optimal tradeoff of energy allocation between pilots and coded symbols is found to be sensitive to the normalized Doppler spread of the channel, the interpolation filter, the modulation scheme, and the pilot selection. In addition, a simple upper bound on the performance of any receiver that performs joint iterative decoding and channel estimation is derived. Extension to irregular code design is also discussed.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:4 ,  Issue: 5 )