By Topic

Mitigating DoS attack through selective bin verification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
M. Sherr ; Sch. of Eng. & Appl. Sci., Pennsylvania Univ., Philadelphia, PA, USA ; M. Greenwald ; C. A. Gunter ; S. Khanna
more authors

Despite considerable attention from both the academic and commercial communities, denial-of-service (DoS) attacks represent a growing threat to network administrators and service providers. A large number of proposed DoS countermeasures attempt to detect an attack in-progress and filter out the DoS attack packets. These techniques often depend on the instantiation of sophisticated routing mechanisms and the ability to differentiate between normal and malicious messages. Unfortunately, neither of these prerequisites may be practical or possible. We propose and evaluate a defense against DoS attacks which we call selective bin verification. The technique shows promise against large DoS attacks, even when attack packets are able to permeate the network and reach the target of their attack. We explore the effectiveness of our technique by implementing an experimental testbed in which selective bin verification is successfully used to protect against DoS attacks. We formally describe the mathematical properties of our approach and delineate "tuning" parameters for defending against various attacks.

Published in:

1st IEEE ICNP Workshop on Secure Network Protocols, 2005. (NPSec).

Date of Conference:

6 Nov. 2005