By Topic

Classification of breast tumours on ultrasound images using morphometric parameters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Alvarenga, A.V. ; Biomedical Eng. Program, Fed. Univ. of Rio de Janeiro, Brazil ; Pereira, W.C.A. ; Infantosi, A.F.C. ; de Azevedo, C.M.

This work aims to assess the potentiality of morphometric parameters in separating breast tumour, on ultrasonic images, as malign or benign. Parameters were calculated over normalised radial length and convex polygons from 152 segmented tumour images. Linear discriminant analysis was applied and parameters performance assessed (accuracy, sensitivity and specificity). The best parameter performances for individual parameters were the normalised residual mean square value and the circularity. Taking these last two and the roughness the best separation performance was obtained: specificity (90.4%) and sensitivity (88.0%). These three parameters were also applied to a multilayer perceptron network using GA-backpropagation hybrid training. The initial results pointed out that hybrid GA-backpropagation training was capable to produce similar high performance both to training (accuracy = 90.3%, sensitivity = 90.0% and specificity = 90.9%) and test (accuracy, sensitivity and specificity equal to 90.0%) procedures. Besides, the performances obtained with two training sets of distinct sizes (30% and 50% of all samples) were slightly different.

Published in:

Intelligent Signal Processing, 2005 IEEE International Workshop on

Date of Conference:

1-3 Sept. 2005