By Topic

Sampling-based approximation algorithms for multi-stage stochastic optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Swamy, C. ; Center for Math. of Inf., Caltech, Pasadena, CA, USA ; Shmoys, David B.

Stochastic optimization problems provide a means to model uncertainty in the input data where the uncertainty is modeled by a probability distribution over the possible realizations of the actual data. We consider a broad class of these problems in which the realized input is revealed through a series of stages, and hence are called multi-stage stochastic programming problems. Our main result is to give the first fully polynomial approximation scheme for a broad class of multi-stage stochastic linear programming problems with any constant number of stages. The algorithm analyzed, known as the sample average approximation (SAA) method, is quite simple, and is the one most commonly used in practice. The algorithm accesses the input by means of a "black box" that can generate, given a series of outcomes for the initial stages, a sample of the input according to the conditional probability distribution (given those outcomes). We use this to obtain the first polynomial-time approximation algorithms for a variety of k-stage generalizations of basic combinatorial optimization problems.

Published in:

Foundations of Computer Science, 2005. FOCS 2005. 46th Annual IEEE Symposium on

Date of Conference:

23-25 Oct. 2005