By Topic

A recursive greedy algorithm for walks in directed graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chandra Chekuri ; Lucent Technol. Bell Labs., Murray Hill, NJ, USA ; M. Pal

Given an arc-weighted directed graph G = (V, A, ℓ) and a pair of nodes s, t, we seek to find an s-t walk of length at most B that maximizes some given function f of the set of nodes visited by the walk. The simplest case is when we seek to maximize the number of nodes visited: this is called the orienteering problem. Our main result is a quasi-polynomial time algorithm that yields an O(log OPT) approximation for this problem when f is a given submodular set function. We then extend it to the case when a node v is counted as visited only if the walk reaches v in its time window [R(v), D(v)]. We apply the algorithm to obtain several new results. First, we obtain an O(log OPT) approximation for a generalization of the orienteering problem in which the profit for visiting each node may vary arbitrarily with time. This captures the time window problem considered earlier for which, even in undirected graphs, the best approximation ratio known [Bansal, N et al. (2004)] is O(log2 OPT). The second application is an O(log2 k) approximation for the k-TSP problem in directed graphs (satisfying asymmetric triangle inequality). This is the first non-trivial approximation algorithm for this problem. The third application is an O(log2 k) approximation (in quasi-poly time) for the group Steiner problem in undirected graphs where k is the number of groups. This improves earlier ratios (Garg, N et al.) by a logarithmic factor and almost matches the inapproximability threshold on trees (Halperin and Krauthgamer, 2003). This connection to group Steiner trees also enables us to prove that the problem we consider is hard to approximate to a ratio better than Ω(log1-ε OPT), even in undirected graphs. Even though our algorithm runs in quasi-poly time, we believe that the implications for the approximability of several basic optimization problems are interesting.

Published in:

46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05)

Date of Conference:

23-25 Oct. 2005