By Topic

A regularization framework for joint blur estimation and super-resolution of video sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hu He ; Dept. of Electr. Eng., State Univ. of New York, Buffalo, NY, USA ; Kondi, L.P.

In traditional digital image restoration, the blurring process of the optic is assumed known. Many previous research efforts have been trying to reconstruct the degraded image or video sequence with either partially known or totally unknown point spread function (PSF) of the optical lens, which is commonly called the blind deconvolution problem. Many methods have been proposed in the application to image restoration. However, little work has been done in the super-resolution scenario. In this paper, we propose a generalized framework of regularized image/video iterative blind deconvolution / super-resolution (IBD-SR) algorithm, using some information from the more matured blind deconvolution techniques from image restoration. The initial estimates for the image restoration help the iterative image/video super-resolution algorithm converge faster and be stable. Experimental results are presented and conclusions are drawn.

Published in:

Image Processing, 2005. ICIP 2005. IEEE International Conference on  (Volume:3 )

Date of Conference:

11-14 Sept. 2005