By Topic

Mesh modelling for sparse image data sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Coleman, S.A. ; Sch. of Comput. & Intelligent Syst., Ulster Univ., UK ; Scotney, B.W.

Incomplete image data sets are of interest in many domains and arise in a variety of applications, and in particular in applications that use remote sensor array data. Although recent developments in mesh modelling of images have provided algorithms that can achieve accurate and efficient image representations without the high computational cost associated with earlier optimisation-based methods, such techniques rely on the availability of the entire image data. These content-based mesh modelling techniques aim to provide a high sample density in regions of interest, such as feature neighbourhoods or around moving objects, whilst achieving efficiency by retaining a low overall image sampling density. The sampling density is determined by a feature map, such as local image curvature or local spatial-frequency content that is obtained from the underlying complete image data. As the requirement for the availability of complete image data makes such content-based mesh modelling techniques unsuitable for application to incomplete images, where an image consists of a sparse data set, we aim to address this issue by proposing an alternative approach to mesh modelling that is based on automatically adaptive feature detection directly applicable to sparsely sampled images.

Published in:

Image Processing, 2005. ICIP 2005. IEEE International Conference on  (Volume:2 )

Date of Conference:

11-14 Sept. 2005