By Topic

Segmentation of prostate boundaries using regional contrast enhancement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sahba, F. ; Dept. of Syst. Design Eng., Electr. & Comput. Eng., Waterloo Univ., Ont., Canada ; Tizhoosh, H.R. ; Salama, M.M.A.

In this paper a novel method for automatic prostate segmentation in transrectal ultrasound images is presented. Morphological grey level transformations are first used to generate an image with enough bright intensity around the prostate. This image is then thresholded to produce a binary image. Then by finding and using a point as the inside point for the prostate, a Kalman estimator is used to isolate the prostate boundary from any irrelevant parts and produce a roughly segmented version (as coarse estimation). Consequently, a fuzzy inference system describing regional and gray level information is employed to enhance the contrast of the prostate with respect to the background. Using strong edges obtained from this enhanced image and information from pixels gradients and also the characteristics in the vicinity of the coarse estimation, the final boundary is extracted. A number of experiments are conducted to validate this method.

Published in:

Image Processing, 2005. ICIP 2005. IEEE International Conference on  (Volume:2 )

Date of Conference:

11-14 Sept. 2005