By Topic

Learning-based super-resolution of 3D face model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shiqi Peng ; Dept. of Comput. Sci., Zhejiang Univ., Hangzhou, China ; Gang Pan ; Zhaohui Wu

Super resolution technique could produce a higher resolution image than the originally captured one. However, nearly all super-resolution algorithms arm at 2D images. In this paper, we focus on generating the 3D face model of higher resolution from one input of 3D face model. In our method, the 3D face models firstly are all regularized via resampling in cylindrical representation. The super resolution then performs in the regular domain of cylindrical coordinate. The experiments using USF HumanID 3D face database of 137 3D face models are carried out, and demonstrate the presented algorithm is promising.

Published in:

IEEE International Conference on Image Processing 2005  (Volume:2 )

Date of Conference:

11-14 Sept. 2005