By Topic

Spatio-temporal modeling of facial expressions using Gabor-wavelets and hierarchical hidden Markov models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Limin Ma ; Sch. of EECS, Ohio Univ., Athens, OH, USA ; Chelberg, D. ; Celenk, M.

As one of the key techniques for futuristic man-machine interface, facial expression analysis has received much attention in recent years. This paper proposes a hierarchical approach to facial expression recognition in image sequences by exploiting both spatial and temporal characteristics within the framework of hierarchical hidden Markov models (HHMMs). Human faces are automatically detected in the maximum likelihood sense. Gabor-wavelet based features are extracted from image sequences to capture the subtle changes of facial expressions. Four prototype emotions; i.e. happiness, anger, fear and sadness, are investigated using the Cohn-Kanade database and an average of 90.98% person-independent recognition rate is achieved. We also demonstrate that HHMMs outperform HMMs for modeling image sequences with multilevel statistical structure.

Published in:

Image Processing, 2005. ICIP 2005. IEEE International Conference on  (Volume:2 )

Date of Conference:

11-14 Sept. 2005