By Topic

High-power MEMS varactors and impedance tuners for millimeter-wave applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lu, Y. ; Electr. Eng. & Comput. Sci. Dept., Univ. of Michigan, Ann Arbor, MI, USA ; Katehi, L.P.B. ; Peroulis, D.

A high-power contactless RF microelectromechanical system (MEMS) varactor and an impedance tuner that utilizes this varactor and is simultaneously optimized for maximum impedance coverage and power handling are presented in this paper. The proposed varactor can successfully handle 4 W of RF power (hot tuning) for more than 108 cycles when tested with no hermetic packaging or nitrogen protection. This is the highest power handling under hot tuning conditions reported to date. In addition to this MEMS device, a 30-GHz four-varactor impedance tuner optimized for high-power operation is demonstrated. The power handling capability of this tuner is 4.5 times higher than conventional designs. These results experimentally demonstrate for the first time the significant advantages of contactless MEMS devices over contact-based structures (e.g., switches) for high-power applications.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:53 ,  Issue: 11 )