By Topic

Broad-band poly-harmonic distortion (PHD) behavioral models from fast automated simulations and large-signal vectorial network measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Root, D.E. ; Agilent Technol. Inc., Santa Rosa, CA, USA ; Verspecht, J. ; Sharrit, D. ; Wood, J.
more authors

We present an optimal experiment design methodology and a superior and fully automated model generation procedure for identifying a class of broad-band multiharmonic behavioral models in the frequency domain. The approach reduces the number of nonlinear measurements needed, minimizes the time to generate the data from simulations, reduces the time to extract the model functions from data, and when used for simulation-based models, takes maximum advantage of specialized simulation algorithms. The models have been subject to extensive validation in applications to real microwave integrated circuits. The derived model is valid for both small and large amplitude drive signals, correctly predicts even and odd harmonics through cascaded chains of functional blocks, simulates accurately load-pull behavior away from 50 Ω, and predicts adjacent channel power ratio and constellation diagrams in remarkably close agreement to the circuit model from which the behavioral model was derived. The model and excitation design templates for generating them from simulations are implemented in Agilent Technologies' Advanced Design System.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:53 ,  Issue: 11 )