By Topic

Reliability modeling of capacitive RF MEMS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
S. Melle ; Lab. d'Anal. et d'Archit. des Syst. Meas., Centre Nat. de la Recherche Scientifique, Toulouse, France ; D. De Conto ; D. Dubuc ; K. Grenier
more authors

The kinetic of dielectric charging in capacitive RF microelectromechanical systems (RF MEMS) is investigated using an original method of stress and monitoring. This effect is investigated through a new parameter: the shift rate of the actuation voltages. We demonstrate that this lifetime parameter has to be considered as a function of the applied voltage normalized by the contact quality between the bridge and the dielectric. We also demonstrate that this phenomenon is related to Frenkel-Poole conduction, which takes place into the dielectric. We finally propose a model that describes the dielectric charging kinetic in capacitive RF MEMS. This model is used to extract a figure-of-merit of capacitive switches lifetime.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:53 ,  Issue: 11 )