By Topic

Wireless secret key generation exploiting reactance-domain scalar response of multipath fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
T. Aono ; Adv. Telecommun. Res. Inst. Int., Kyoto, Japan ; K. Higuchi ; T. Ohira ; B. Komiyama
more authors

We describe a secure communication scheme that uses the random fluctuation of the natural environment of communication channels. Only the transmitter and the receiver share the communication channel characteristics. From reciprocity between a transmitter and a receiver, it is possible for them to share one-time information of their fluctuating channel. This can provide a secret key agreement scheme without key management and key distribution processes. In this paper, we propose a new secret key generation and agreement scheme that uses the fluctuation of channel characteristics with an electronically steerable parasitic array radiator (ESPAR) antenna. This antenna, which has been proposed and prototyped, is a smart antenna designed for consumers. Using the beam-forming technique of the ESPAR antenna, we can increase the fluctuation of the channel characteristics. From experimental results, we conclude that the proposed scheme has the ability to generate secret keys from the received signal strength indicator (RSSI) profile with sufficient independence.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:53 ,  Issue: 11 )