Cart (Loading....) | Create Account
Close category search window

Stability and dispersion analysis for higher order 3-D ADI-FDTD method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Weiming Fu ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore ; Eng Leong Tan

In this paper, the stability and dispersion analysis for higher order three-dimensional (3-D) alternating-direction-implicit (ADI) finite-difference time-domain (FDTD) methods is presented. Starting with the stability and dispersion analysis of the fourth order 3-D ADI-FDTD method, which adopts the fourth order cell-centered finite difference scheme for the spatial differential operator, we generalize the analysis to other higher order methods based on the sixth and tenth order cell-centered finite difference schemes. To the best of our knowledge, this is the first time that a comprehensive study of the stability and dispersion characteristics for one series of higher order 3-D ADI-FDTD methods is presented. Our analysis results show that all the higher order ADI-FDTD methods that are based on cell-centered finite difference schemes are unconditionally stable. The generalized form of the dispersion relations for these unconditionally stable ADI-FDTD methods is also presented. Using the relations attained, the effects of the order of schemes, mesh size and time step on the dispersion are illustrated through numerical results. This study will be useful for the selection and evaluation of various higher order ADI methods.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:53 ,  Issue: 11 )

Date of Publication:

Nov. 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.