By Topic

Global convergence of Lotka-Volterra recurrent neural networks with delays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhang Yi ; Sch. of Comput. Sci. & Eng., Univ. of Electron. Sci. & Technol. of China, Chengdu, China ; Kok Kiong Tan

Recurrent neural networks of the Lotka-Volterra model have been proven to possess characteristics which are desirable in some neural computations. A clear understanding of the dynamical properties of a recurrent neural network is necessary for efficient applications of the network. This paper studies the global convergence of general Lotka-Volterra recurrent neural networks with variable delays. The contributions of this paper are: 1) sufficient conditions are established for lower positive boundedness of the networks; 2) global exponential stability conditions are obtained for the networks. These conditions are totally independent of the variable delays which are therefore allowed to be uncertain; 3) novel Lyapunov functionals are constructed to establish delays dependent conditions for global asymptotic stability, and 4) simulation results and examples are provided to supplement and illustrate the theoretical contributions presented.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:52 ,  Issue: 11 )