By Topic

Femtoliter to picoliter droplet generation for organic polymer deposition using single reservoir ejector arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Demirci, U. ; E. L. Ginzton Lab., Stanford Univ., CA, USA ; Yaralioglu, G.G. ; Haeggstrom, E. ; Khuri-Yakub, B.T.

Direct deposition of photoresist and other spin-on materials, such as low-k and high-k dielectrics, has the potential to reduce waste as well as production costs. A new design of acoustically actuated two-dimensional (2-D) micromachined droplet ejector arrays can eject various solvents and other fluids ranging from femtoliter to picoliter droplet volumes. These ejectors do not harm fluids that are heat or pressure sensitive. Moreover, they are chemically compatible with the materials used in integrated circuit manufacturing. Therefore, they can be used for benign deposition of photoresist and other spin-on materials, such as low-k and high-k dielectrics. A vibrating circular SixNy thin-film membrane with an orifice at the center forms the unit cell of a 2-D ejector array. Initially, one side of the membrane is loaded with the ejection fluid. Then, ultrasonic waves generated by a piezoelectric transducer force the membranes to displace at resonance. As a result of this actuation, droplets are ejected through the membrane orifice. We ejected water at 1.06 MHz, isopropanol at 1.14 MHz, ethyl alcohol at 1.06 MHz, and acetone at 1.04 MHz from a 20×20 single reservoir 2-D micromachined array with 160 μm in diameter SixNy membranes and 10 μm in diameter orifices. The performance of single reservoir flextensional membrane-based ejector arrays was compared to flextensional membrane-based ejector arrays with reservoirs. A 50% decrease in the required power per ejected droplet and a reduced design complexity were demonstrated over the 2-D micromachined arrays with individual reservoirs. In addition, we deposited Shipley SPR 3612 photoresist at 1.12 MHz in a dry lab environment. No spinning was done after deposition. We covered a 2×2-mm area on a wafer with a 5.5-μm thick photoresist layer. The maximum thickness variation over the area was 0.4 μm. Moreover, we present a directly written 1.6-μm thick 900-μm wide and 8-mm long homogeneous photoresist line. The photoresist thickness variation along the line was 0.2 and 0.4 μm in vertical and horizontal directions, respectively.

Published in:

Semiconductor Manufacturing, IEEE Transactions on  (Volume:18 ,  Issue: 4 )