Cart (Loading....) | Create Account
Close category search window
 

Using adaline neural network for performance improvement of smart antennas in TDD wireless communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kavak, A. ; Dept. of Comput. Eng., Kocaeli Univ., Izmit, Turkey ; Yigit, H. ; Ertunc, H.M.

In time-division-duplex (TDD) mode wireless communications, downlink beamforming performance of a smart antenna system at the base station can be degraded due to variation of spatial signature vectors corresponding to mobile users especially in fast fading scenarios. To mitigate this, downlink beams must be controlled by properly adjusting their weight vectors in response to changing propagation dynamics. This can be achieved by modeling the spatial signature vectors in the uplink period and then predicting them to be used as beamforming weight vectors for the new mobile position in the downlink transmission period. We show that ADAptive LInear NEuron (ADALINE) network modeling based prediction of spatial signatures provides certain level of performance improvement compared to conventional beamforming method that employs spatial signature obtained in previous uplink interval. We compare the performance of ADALINE with autoregressive (AR) modeling based predictions under varying channel propagation (mobile speed, multipath angle spread, and number of multipaths), and filter order/delay conditions. ADALINE modeling outperforms AR modeling in terms of downlink SNR improvement and relative error improvement especially under high mobile speeds, i.e., V=100 km/h.

Published in:

Neural Networks, IEEE Transactions on  (Volume:16 ,  Issue: 6 )

Date of Publication:

Nov. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.