By Topic

Neural-network-based adaptive hybrid-reflectance model for 3-D surface reconstruction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chin-Teng Lin ; Control Eng. & the Dept. of Comput. Sci., Nat. Chiao-Tung Univ., Taipei, Taiwan ; Wen-Chang Cheng ; Sheng-Fu Liang

This paper proposes a novel neural-network-based adaptive hybrid-reflectance three-dimensional (3-D) surface reconstruction model. The neural network automatically combines the diffuse and specular components into a hybrid model. The proposed model considers the characteristics of each point and the variant albedo to prevent the reconstructed surface from being distorted. The neural network inputs are the pixel values of the two-dimensional images to be reconstructed. The normal vectors of the surface can then be obtained from the output of the neural network after supervised learning, where the illuminant direction does not have to be known in advance. Finally, the obtained normal vectors are applied to enforce integrability when reconstructing 3-D objects. Facial images and images of other general objects were used to test the proposed approach. The experimental results demonstrate that the proposed neural-network-based adaptive hybrid-reflectance model can be successfully applied to objects generally, and perform 3-D surface reconstruction better than some existing approaches.

Published in:

Neural Networks, IEEE Transactions on  (Volume:16 ,  Issue: 6 )