Cart (Loading....) | Create Account
Close category search window

Neuron selection for RBF neural network classifier based on data structure preserving criterion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mao, K.Z. ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Guang-Bin Huang

The central problem in training a radial basis function neural network is the selection of hidden layer neurons. In this paper, we propose to select hidden layer neurons based on data structure preserving criterion. Data structure denotes relative location of samples in the high-dimensional space. By preserving the data structure of samples including those that are close to separation boundaries between different classes, the neuron subset selected retains the separation margin underlying the full set of hidden layer neurons. As a direct result, the network obtained tends to generalize well.

Published in:

Neural Networks, IEEE Transactions on  (Volume:16 ,  Issue: 6 )

Date of Publication:

Nov. 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.