By Topic

Connectionist-based Dempster-Shafer evidential reasoning for data fusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Basir, O. ; Pattern Anal. & Machine Intelligence Res. Group, Univ. of Waterloo, Ont., Canada ; Karray, F. ; Hongwei Zhu

Dempster-Shafer evidence theory (DSET) is a popular paradigm for dealing with uncertainty and imprecision. Its corresponding evidential reasoning framework is theoretically attractive. However, there are outstanding issues that hinder its use in real-life applications. Two prominent issues in this regard are 1) the issue of basic probability assignments (masses) and 2) the issue of dependence among information sources. This paper attempts to deal with these issues by utilizing neural networks in the context of pattern classification application. First, a multilayer perceptron neural network with the mean squared error as a cost function is implemented to calculate, for each information source, posteriori probabilities for all classes. Second, an evidence structure construction scheme is developed for transferring the estimated posteriori probabilities to a set of masses along with the corresponding focal elements, from a Bayesian decision point of view. Third, a network realization of the Dempster-Shafer evidential reasoning is designed and analyzed, and it is further extended to a DSET-based neural network, referred to as DSETNN, to manipulate the evidence structures. In order to tackle the issue of dependence between sources, DSETNN is tuned for optimal performance through a supervised learning process. To demonstrate the effectiveness of the proposed approach, we apply it to three benchmark pattern classification problems. Experiments reveal that the DSETNN outperforms DSET and provide encouraging results in terms of classification accuracy and the speed of learning convergence.

Published in:

Neural Networks, IEEE Transactions on  (Volume:16 ,  Issue: 6 )