By Topic

Output feedback control of a class of discrete MIMO nonlinear systems with triangular form inputs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jin Zhang ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore ; S. S. Ge ; Tong Heng Lee

In this paper, adaptive neural network (NN) control is investigated for a class of discrete-time multi-input-multi-output (MIMO) nonlinear systems with triangular form inputs. Each subsystem of the MIMO system is in strict feedback form. First, through two phases of coordinate transformation, the MIMO system is transformed into input-output representation with the triangular form input structure unchanged. By using high-order neural networks (HONNs) as the emulators of the desired controls, effective output feedback adaptive control is developed using backstepping. The closed-loop system is proved to be semiglobally uniformly ultimate bounded (SGUUB) by using Lyapunov method. The output tracking errors are guaranteed to converge into a compact set whose size is adjustable, and all the other signals in the closed-loop system are proved to be bounded. Simulation results show the effectiveness of the proposed control scheme.

Published in:

IEEE Transactions on Neural Networks  (Volume:16 ,  Issue: 6 )