Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Finite-element neural networks for solving differential equations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ramuhalli, P. ; Dept. of Electr. & Comput. Eng., Michigan State Univ., East Lansing, MI, USA ; Udpa, L. ; Udpa, S.S.

The solution of partial differential equations (PDE) arises in a wide variety of engineering problems. Solutions to most practical problems use numerical analysis techniques such as finite-element or finite-difference methods. The drawbacks of these approaches include computational costs associated with the modeling of complex geometries. This paper proposes a finite-element neural network (FENN) obtained by embedding a finite-element model in a neural network architecture that enables fast and accurate solution of the forward problem. Results of applying the FENN to several simple electromagnetic forward and inverse problems are presented. Initial results indicate that the FENN performance as a forward model is comparable to that of the conventional finite-element method (FEM). The FENN can also be used in an iterative approach to solve inverse problems associated with the PDE. Results showing the ability of the FENN to solve the inverse problem given the measured signal are also presented. The parallel nature of the FENN also makes it an attractive solution for parallel implementation in hardware and software.

Published in:

Neural Networks, IEEE Transactions on  (Volume:16 ,  Issue: 6 )