By Topic

Long-term workload phases: duration predictions and applications to DVFS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Computer systems increasingly rely on adaptive dynamic management of their operations to balance power and performance goals. Such dynamic adjustments rely heavily on the system's ability to observe and predict workload behavior and system responses. The authors characterize the workload behavior of full benchmarks running on server-class systems using hardware performance counters. Based on these characterizations, they developed a set of long-term value, gradient, and duration prediction techniques that can help systems to provision resources.

Published in:

Micro, IEEE  (Volume:25 ,  Issue: 5 )