By Topic

Weighted kernel functions for SVM learning in string domains: a distance function viewpoint

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Vanschoenwinkel, B. ; Dept. of Informatics, Vrije Univ. Brussel, Belgium ; Feng Liu ; Manderick, B.

This paper extends the idea of weighted distance functions to kernels and support vector machines. Here, we focus on applications that rely on sliding a window over a sequence of string data. For this type of problems it is argued that a symbolic, context-based representation of the data should be preferred over a continuous, real format as this is a much more intuitive setting for working with (weighted) distance functions. It is shown how a weighted string distance can be decomposed and subsequently used in different kernel functions and how these kernel functions correspond to inner products between real vectors. As a case-study named entity recognition is used with information gain ratio as a weighting scheme.

Published in:

Machine Learning and Cybernetics, 2005. Proceedings of 2005 International Conference on  (Volume:7 )

Date of Conference:

18-21 Aug. 2005