By Topic

Multiple Layar Kernel-Based Approach in Relevance Feedback Content-Based Image Retrieval System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kien-Ping Chung ; School of Information Technology, Murdoch University, Perth, Australia; E-MAIL: k.chung@murdoch.edu.au ; Chun-Che Fung

Relevance feedback has drawn intense interest from many researchers in the field of content-based image retrieval (CBIR). In recent years, kernel-based approach has been a popular choice for the implementation of the relevance feedback based CBIR system. This is largely due to its ability to classify patterns with limited sample data. Since most of the kernel approaches reported have been treating the input as a long flat vector, such arrangement may increase the chances of “polluting” the feature element that uniquely identifies the selected image group. This paper proposes a two layer kernel configuration with an objective to improve the retrieval accuracy. While the performance of the two configurations is similar in certain conditions, the proposed configuration has shown to superior when dominant feature element exists that is capable to uniquely identify the selected image group.

Published in:

Machine Learning and Cybernetics, 2005. Proceedings of 2005 International Conference on  (Volume:1 )

Date of Conference:

18-21 Aug. 2005