By Topic

Price-based unit commitment: a case of Lagrangian relaxation versus mixed integer programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tao Li ; Electr. Power & Power Electron. Center, Illinois Inst. of Technol., Chicago, IL, USA ; M. Shahidehpour

This paper formulates the price-based unit commitment (PBUC) problem based on the mixed integer programming (MIP) method. The proposed PBUC solution is for a generating company (GENCO) with thermal, combined-cycle, cascaded-hydro, and pumped-storage units. The PBUC solution by utilizing MIP is compared with that of Lagrangian relaxation (LR) method. Test results on the modified IEEE 118-bus system show the efficiency of our MIP formulation and advantages of the MIP method for solving PBUC. It is also shown that MIP could be applied to solve hydro-subproblems including cascaded-hydro and pumped-storage units in the LR-based framework of hydro-thermal coordination. Numerical experiments on large systems show that the MIP-based computation time and memory requirement would represent the major obstacles for applying MIP to large UC problems. It is noted that the solution of large UC problems could be accomplished by improving the MIP formulation, the utilization of specific structure of UC problems, and the use of parallel processing.

Published in:

IEEE Transactions on Power Systems  (Volume:20 ,  Issue: 4 )