By Topic

Control of DFIG-based wind generation for power network support

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hughes, F.M. ; Manchester Centre for Electr. Energy, Univ. of Manchester, UK ; Anaya-Lara, O. ; Jenkins, N. ; Strbac, G.

This paper addresses the design and implementation of a novel control scheme for a doubly fed induction generator (DFIG), of the type employed with wind turbines, to provide support to power system operation. It is shown that this controller provides a DFIG-based wind farm with operational and control compatibility with conventional power stations, the ability to contribute to voltage support and recovery following network faults, the ability to provide a power system stabilizer capability that improves overall system damping, and the capability of contributing short-term frequency support following loss of network generation. A simple but realistic test network that combines synchronous and wind farm generation has been modeled and used to assess dynamic performance. Simulation results are presented and discussed that demonstrate the capabilities and contributions of the new DFIG controller to network support.

Published in:

Power Systems, IEEE Transactions on  (Volume:20 ,  Issue: 4 )