Cart (Loading....) | Create Account
Close category search window
 

Market-clearing with stochastic security-part I: formulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bouffard, F. ; Dept. of Electr. & Comput. Eng., McGill Univ., Montreal, Que., Canada ; Galiana, F.D. ; Conejo, A.J.

The first of this two-paper series formulates a stochastic security-constrained multi-period electricity market-clearing problem with unit commitment. The stochastic security criterion accounts for a pre-selected set of random generator and line outages with known historical failure rates and involuntary load shedding as optimization variables. Unlike the classical deterministic reserve-constrained unit commitment, here the reserve services are determined by economically penalizing the operation of the market by the expected load not served. The proposed formulation is a stochastic programming problem that optimizes, concurrently with the pre-contingency social welfare, the expected operating costs associated with the deployment of the reserves following the contingencies. This stochastic programming formulation is solved in the second companion paper using mixed-integer linear programming methods. Two cases are presented: a small transmission-constrained three-bus network scheduled over a horizon of four hours and the IEEE Reliability Test System scheduled over 24 h. The impact on the resulting generation and reserve schedules of transmission constraints and generation ramp limits, of demand-side reserve, of the value of load not served, and of the constitution of the pre-selected set of contingencies are assessed.

Published in:

Power Systems, IEEE Transactions on  (Volume:20 ,  Issue: 4 )

Date of Publication:

Nov. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.