By Topic

Design of a low power wide-band high resolution programmable frequency divider

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yu, X.P. ; Center for Integrated Circuits & Syst., Nanyang Technol. Univ., Singapore ; Do, M.A. ; Jia, L. ; Ma, J.-G.
more authors

The design of a high-speed wide-band high resolution programmable frequency divider is investigated. A new reloadable D flip-flop for the high speed programmable frequency divider is proposed. It is optimized in terms of propagation delay and power consumption as compared with the existing designs. Measurement results show that an all-stage programmable counter implemented with this D flip-flop using the Chartered 0.18 /spl mu/m CMOS process is capable of operating up to 1.8 GHz for a 1.8 V supply voltage and a 5.8-mW power consumption. By using this counter, an ultra-wide range high resolution frequency divider is achieved with low power consumption for 5-6-GHz wireless LAN applications.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:13 ,  Issue: 9 )