We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Customizable elliptic curve cryptosystems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cheung, R.C.C. ; Dept. of Comput., Imperial Coll. London, UK ; Telle, N.J. ; Luk, W. ; Cheung, P.Y.K.

This paper presents a method for producing hardware designs for elliptic curve cryptography (ECC) systems over the finite field GF(2/sup m/), using the optimal normal basis for the representation of numbers. Our field multiplier design is based on a parallel architecture containing multiple m-bit serial multipliers; by changing the number of such serial multipliers, designers can obtain implementations with different tradeoffs in speed, size and level of security. A design generator has been developed which can automatically produce a customised ECC hardware design that meets user-defined requirements. To facilitate performance characterization, we have developed a parametric model for estimating the number of cycles for our generic ECC architecture. The resulting hardware implementations are among the fastest reported: for a key size of 270 bits, a point multiplication in a Xilinx XC2V6000 FPGA at 35 MHz can run over 1000 times faster than a software implementation on a Xeon computer at 2.6 GHz.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:13 ,  Issue: 9 )