By Topic

Theoretical bounds of majority voting performance for a binary classification problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Narasimhamurthy, A. ; Dept. of Comput. Sci. & Eng., Pennsylvania State Univ., University Park, PA, USA

A number of earlier studies that have attempted a theoretical analysis of majority voting assume independence of the classifiers. We formulate the majority voting problem as an optimization problem with linear constraints. No assumptions on the independence of classifiers are made. For a binary classification problem, given the accuracies of the classifiers in the team, the theoretical upper and lower bounds for performance obtained by combining them through majority voting are shown to be solutions of the corresponding optimization problem. The objective function of the optimization problem is nonlinear in the case of an even number of classifiers when rejection is allowed, for the other cases the objective function is linear and hence the problem is a linear program (LP). Using the framework we provide some insights and investigate the relationship between two candidate classifier diversity measures and majority voting performance.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:27 ,  Issue: 12 )